Laman

Senin, 11 Maret 2013

Billboard Simulation, Analyses, and Optimization Strength Design

I will continue my post about billboard case.. As we know from the dimension given before according to the requirements is :

v. wind = 5 m/s
Billboard dimension
 Length = 5,5 m
 Width = 0,5 m

Control Volume :
 Length = 50 m
 Width = 15 m
top and bottom as symmetric side

first step in simulation using CFDSOF to get Total Pressure of air flow through the board. The explanation below describ how to do simulation. First, we make a boundary condition as control volume according the dimension above, makes grid that represent the dimension of billboard, set inlet and outlet that show how fluid start to flow and ends in left and right side of the control volume. Set symmetrical in top and bottom side that show the flow characteristic in further top and bottom side is unknown. Set the domain about type of flow is k-epsilon that represent the type flow of air is in turbulent flow. Set velocity inlet is 5 m/s as assumption of highest velocity may be pass the board. After that, we proccess the simulation by iteration until the condition of convergency is approached. Then show the results in vector and contour.

Figure 1. Grid of control volume that will domain of iteration


Figure 2.  vector of velocity magnitude of air flow 


Figure 3.  Contour velocity magnitude distribution


Figure 4. Contour of  relative total pressure


Figure 5. Contour of static pressure

After we got the results in Total pressure, we can find the forces in the surface of board by equation P = F/A, from it we can estimate bending moment value (M). In post processing CFDSOF we can see the distribution of total pressure in koordinat nodal by "lihat alfa" :

Figure 6. Relative Total Pressure distribution in grid cell 

By determination difference pressure between fore side and back side of the board cell, we can calculate forces distribution by know the area of grid cell.

Figure 7. Table calculation to find max. bending moment

The resultan of forces is shear forces along the references point (Point 1 is the botom reference that will be attached pillar bar). 

Figure 8. Shear force diagram along reference point

 By integral of shear forces we get moment diagram. Total area under shear forces graph is moment diagram. We can see that bending moment max. is in point 1 reference, because in this case we use one point reference in point 1.

Figure 9. Moment diagram show max. bending moment in the reference point 1 that assumpted as bottom side of board to be fitted with pillar bar.

After we got the value for maximum bending moment (M) like showed in graph above the value is 114,075 Nm (minus signed that resultan forces is counter direction with wind direction), then we have to calculate Modulus area (W) that consists of Inertia (I) and distance of neutral axis (y).

W = I / y

As we know from the ASTM code that the material we used is carbon steel with composition and data for yield strength is Bj-52 with 3600 kg/cm2 yield strength. The material is cylinder that will we used as pillar bar for billboard.
From the data yield strength we can estimate the dimension for diameter of solid cylinder :

I = phi (D^4) / 64

by used neutral axis distance for the billboard length is 5.5 m, we used y = 5.5 m.
so, we can estimate diameter dimension by :

yield stress = Max. bending moment / Modulus area

0,36 = (114 x 5,5) / ((22/7 x D^4) / 64)
D^4 = 2,82 x 10^-5
D     = 0,073 m = 7,3 cm

From calculation the formula above we can determine the dimension for solid cylinder pillar is about 0,073 m or 7,3 cm.

Jumat, 01 Maret 2013

Billboard case simulation with CFD

Study case

v. wind = 5 m/s
Billboard dimension
Length = 2 m
Width = 0,1 m

Control Volume :
Length = 20 m
Width = 6 m
top and bottom as symmetric side

assumption flow is steady state


Below, the tutorial and some steps using CFDSOF, helping fluid dynamic computation for running model case simulation:
1. Open CFDSOF
2. type Input/in
3. For unit system, choose bawaan, type No/N
4. Type comand Atur Domain / AD
5. Control dimensi, type D
6. Pilih dimensi, 2 dimensi
7. Control size for domain, ketik UD
8. Input length of domain, (Length of billboard is 50 m)
9. Input width of domain, (Width of billboard is 15 m)
10. Control amount of cell, (100 for length and 30 for the width), type JC
11. Control cell, choose menu input-cell-tayang
12. Block cell that will used as wall, in type option choose W-WALL, pakai, tayang
13. Block cell that will used as billboard and set as w-wall.
14. Block cell that will used as inlet, in type option choose inlet, pakai, tayang
15. Block cell that will used as outlet, in type option choose outlet, pakai, tayang
16. Block row cell top and bottom and set as symmetric.
figure 1. Grid generation
17. Input velocity, choose menu input-KS
18. Choose inlet-set velocity
19. Atur kecepatan untuk inlet sebesar 5 m/s utk sumbu-x (u), pakai. It because the direction of the wind is in x direction.
20. Pilih menu olah-iterasi, tentukan jumlah iterasi, (pada tutorial ini 1000), tekan tombol iterasi. Iterasi adalah banyaknya perhitungan untuk fluida yang masuk dalam ruangan.
21. Lihat hasil iterasi, jika “kriteria konvergensi terpenuhi-stop” maka simulasi kita berhasil, hal ini berarti geometri yang kita buat dan variabel-variabel yang kita masukkan adalah sesuai dan dapat dianalisis keadaan alirannya. Jika percobaan kita menghasilkan iterasi divergen, berarti terjadi kesalahan dalam pre-process mengatur geometri, domain, cell, dsb.

figure 2. Residu plot and iterasi
22. Untuk melihat gambar vektor, pilih menu hasil-vektor, Pilih type kecepatan-atur skala-tayang
Untuk melihat gambar kontur, pilih menu hasil-kontur, pilih type kecepatan-pilih penuh-tayang.
Untuk 3 dimensi hampir sama dengan 2 dimensi, dengan merubah dimensi menjadi 3, dan melakukan pengaturan untuk sumbu i, j, k, jika diperlukan pakai irisan dan juga membuat inlet,outlet yang sesuai untuk bangun 3 dimensi. Pastikan jumlah cell harus sama untuk tiap sumbu i,j,dan k karena akan berpengaruh pada hasil iterasi.

figure 3. Velocity magnitude kontur

figure 4. Absolute total pressure kontur